Structure of Tetrakis(pyridine)platinum(II) Chloride Trihydrate: Unconstrained Anisotropic Least-Squares Refinement of Hydrogen and Non-Hydrogen Atoms From Combined X-ray-Neutron Diffraction Data*

By Chin Hsuan Wei, Brian E. Hingerty \dagger and William R. Busing \ddagger
Biology Division, Health and Safety Research Division, and Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Received 1 June 1988; accepted 26 July 1988)

Abstract

Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]^{2+} .[\mathrm{Cl}]_{2}^{-} .3 \mathrm{H}_{2} \mathrm{O}, M_{r}=636.452\), monoclinic, $C c, a=12.711$ (1), $b=12.856$ (1), $c=$ 16.600 (2) $\AA, \quad \beta=118.544(8)^{\circ}, \quad V=2382.9$ (2) \AA^{3}, $Z=4, D_{m}=1.78$ (2), $D_{x}=1.774 \mathrm{~g} \mathrm{~cm}^{-3}, \lambda\left(\mathrm{Mo} K \alpha_{1}\right)$ $=0.7093 \AA, \quad \mu=63.58 \mathrm{~cm}^{-1}, \quad F(000)=1240 . \quad T=$ 296 (1) K. Final $R(F)=0.021$ (X-ray) for 3429 counter data. The six water H atoms were not located. Subsequently the compound was recrystallized from a pyridine-water solution and a suitable crystal thus obtained was used to collect a set of 1326 neutron diffraction data which were combined with X-ray data for further least-squares refinement. The final $R(F)$ and $R\left(F^{2}\right)$ indexes were 0.022 and 0.031 , respectively, based on 56 atoms with 515 variables with anisotropic thermal motions. The four N atoms of the pyridine rings display the usual square-planar coordination around the metal with an average $\mathrm{Pt}-\mathrm{N}$ distance of 2.024 (2) \AA. Each pyridine ring is nearly planar, and the four N atoms are planar to within 0.026 (2) \AA, the Pt_{t} atom deviating from this plane by 0.023 (2) \AA. All water H atoms make hydrogen bonds with neighboring Cl^{-}ions and each Cl^{-}ion is linked to three H atoms of different water molecules, so that a three-dimensional network is formed.

Introduction. Platinum complexes have had a long history in the development of inorganic chemistry, and some of them, such as cis-diaminodichloroplatinum(II) (Connors \& Roberts, 1974; Lippard, 1982), have been in use as antitumor drugs. Crystallographic studies on some platinum-nucleosides and platinum-nucleotides have also been reported (Bau, Gellert, Lehovec \& Louie, 1979). The preparation of cis- and transdiaminodichloroplatinum(II) has been reported by

[^0]Kauffman (1963) and their X-ray structures have appeared in the literature (Colario \& Orioli, 1975). Although the formation of tetrakis(pyridine)platinum(II) chloride is mentioned (Kauffman, 1963), the degree of hydration of this compound was not given. The isolation of the title compound not only permitted the determination of its structure and the number of water molecules in a formula unit but also enabled us to demonstrate the three-dimensional network of its hydrogen-bonding scheme by the refinement based on combined X-ray and neutron data. The advantages of this kind of refinement have been discussed by Orpen, Pippard, Sheldrick \& Rouse (1978).

Experimental. A brownish powder sample of the reaction product of $\mathrm{K}_{2} \mathrm{PtCl}_{4}$ and adenosine with a presumed formula $\mathrm{Pt}\left(\mathrm{Ado}^{2} \mathrm{Cl}_{2}\right)$ was kindly furnished by Dr J. D. Hoeschele of Health and Safety Research Division. Attempts to crystallize this presumed compound from either water or alcohol solution were not successful. The powder could be dissolved in a mixture of pyridine and dimethyl sulfoxide, and yellow crystals with large mosaic spread were obtained. When 1,2dichloroethane was used as a solvent, crystals (compound I) suitable for X-ray analysis could be obtained. When (I) was treated further with pyridine and dimethyl sulfoxide (v / v ratio $9: 1$) in the presence of a small amount of water over a steam bath, large colorless air-stable crystals (compound II) were obtained upon cooling. By repeated crystallization with pyridine and water, large crystals suitable for neutron diffraction study were obtained.

A subsequent structural analysis by X-ray diffraction revealed (I) to be trans-diaminodichloroplatinum(II). Our crystallographic results for compound (I) are essentially identical with those reported previously (Colario \& Orioli, 1975).§ An elemental analysis of

[^1]compound (II)* gave the following composition: Pt, $30 \cdot 19$; C, $38 \cdot 08$; H, $4 \cdot 36$; N, 8.81 ; Cl, $11 \cdot 35 \%$. These values are consistent with the formula $\mathrm{PtC}_{20} \mathrm{H}_{26} \mathrm{~N}_{4}$ $\mathrm{O}_{3} \mathrm{Cl}_{2}$ of the title compound which has the calculated composition: Pt, 30.65; C, 37.74; H, 4.12; N, 8.80; $\mathrm{Cl}, 11 \cdot 14 \%$. Crystal density of compound (II) was determined by flotation in mixtures of bromobenzene and bromoform.
X-ray data collection. Preliminary X-ray photographs showed the crystals to be monoclinic with space group either Cc or $\mathrm{C} 2 / \mathrm{c}$. Fifteen strong reflections in the 2θ range $52-56^{\circ}$ were centered on the Oak Ridge computer-controlled diffractometer (Busing, Ellison, Levy, King \& Roseberry, 1968) with Nb -filtered Mo $K \alpha_{1} \quad(\lambda=0.7093 \AA)$ radiation, and the cell constants were refined by the least-squares method. Details of intensity data collection are given in Table 1.

Solution and refinement of the structure based on X-ray data. A three-dimensional Patterson function was computed (Levy, 1977) from the corrected intensities. Attempts were made to solve the structure under $C 2 / c$ symmetry as well as $C c$ symmetry. The structural analysis including preliminary least-squares refinements unambiguously revealed that Cl^{-}ions and water O atoms do not conform to $C 2 / c$ symmetry, and the resulting choice of the non-centrosymmetric Cc space group was confirmed by the locations and refinement of the water \mathbf{H} atoms from the combined X-ray and neutron data. The origin of $C c$ was defined in the a and c directions by fixing the x and z parameters of the independent Pt atom at zero. The structure was determined from a Patterson synthesis, and the positions for all non-hydrogen atoms were obtained from successive Fourier synthesis (Wei \& Hingerty, 1984). Idealized positions calculated for the 20 hydrogen atoms attached to the pyridine carbon atoms were constrained \dagger in the least-squares refinements with the program ORXFLS4, an updated version of ORFLS (Busing, Martin \& Levy, 1962). The least-squares refinements were based on F^{2}, the function minimized being $\sum w\left|F_{o}^{2}-s^{2} F_{c}^{2}\right|^{2}$, where the weights w are reciprocals of $\sigma_{c}^{2}\left(F_{o}^{2}\right)+\left(0.04 F_{o}^{2}\right)^{2}$. Here σ_{c} is the standard error from counting statistics and s is the scale factor. The refinement was carried out with isotropic extinction corrections until all parameter shifts became less than 3% of the corresponding standard deviations. The final values for $R(F), R\left(F^{2}\right)$ and $w R\left(F^{2}\right)$ [defined as $\left.\left(\sum w\left|\Delta F^{2}\right|^{2} / w F_{\sigma}^{4}\right)^{1 / 2}\right]$ are $0.021,0.031$ and 0.048 , respectively. The standard deviation of an observation

[^2]| Table 1. Diffraction data collection for$\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]^{2+} \cdot[\mathrm{Cl}]_{2} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ | | |
| :---: | :---: | :---: |
| | X-ray data | Neutron data |
| Crystal dimensions (mm) | $0.165 \times 0.267 \times 0.715^{*}$ | $1.33 \times 1.39 \times 3.57$ |
| Radiation | Mo $K \alpha_{1}(0.7093$ A) | neutron (1.537 ${ }^{\text {) }) ~} \dagger$ |
| $\mu\left(\mathrm{cm}^{-1}\right)$ | 63.58 \ddagger | $2 \cdot 107$ |
| Transmission range§ | 0.196-0.379 | 0.718-0.778 |
| Take-off angle (${ }^{\circ}$) | 3 | - |
| Scan type | $\theta-2 \theta$ | $\theta-2 \theta$ |
| Scan step (${ }^{\circ}$) | 0.025 | 0.05 |
| Time per step (s) | 2-3 | 2.4-4.8 |
| Background counting time (s) | 12-48 | 24-48 |
| $[(\sin \theta) / \lambda]_{\max }\left(\AA^{-1}\right)$ | 0.70 | 0.58 |
| Number of unique nonzero used | 3429 | 1336 |
| Number of variables | 273 | 515 |
| Data-to-parameter ratio | 12.56 | 9.254 |
| Temperature (K) | 297 | 297 |

* The largest dimension in this rectangular rod crystal corresponds to the b axis.
\dagger Be (101) monochromator with pyrolytic graphite filter to reduce $\lambda / 2$ contribution to an estimated value of less than 2%.
\ddagger Linear absorption coefficient for Mo Ka radiation.
§ Method of Busing \& Levy (1957) with 512 integration points.
9 This ratio is for the combined refinement with both X -ray and neutron data.
of unit weight, defined as $\left[w\left|\Delta F^{2}\right|^{2} /(n-p)\right]^{1 / 2}$, where n is the number of observations and p the number of variables fitted to the data set, is 0.905 . A final difference Fourier synthesis showed no residual peak greater than 0.51 or less than $-0.53 \mathrm{e} \AA^{-3}$. The atomic scattering factors used were those of Cromer \& Waber (1974). Dispersion corrections of platinum and chlorine for Mo $K \alpha$ were also included (Cromer, 1974).

Neutron data collection. Because the analysis of X-ray data did not reveal the H atoms of the water molecules, clearly neutron data were desirable. Neutron diffraction intensities were measured with the neutron wavelength of $1.537 \AA$ from a crystal of size $1.33 \times$ $1.39 \times 3.57 \mathrm{~mm}$ using a Huber four-circle diffractometer at the Oak Ridge High Flux Isotope Reactor. A monochromator of Be 101 was used. A complete set of 1191 unique reflections (including zero intensities) was measured for $2 \theta<100^{\circ}$; another 145 reflections were measured out to $100<2 \theta<126^{\circ}$ with the diffractometer in the parallel mode, but many reflections in the latter range were not accessible. The intensity data were corrected for absorption using a linear absorption coefficient of $2.107 \mathrm{~cm}^{-1}$ (Koester \& Yelon, 1982).* Details of data collection are also given in Table 1.
Refinement of structure based on X-ray and neutron data. Least-squares refinement based on combined X-ray and neutron data was performed with the program ORXFLS. All necessary modifications were made in user subroutine $W E I G H T$, which is called

[^3]Table 2. Positional and isotropic thermal parameters for $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]^{1++} .[\mathrm{Cl}]_{2}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}$

	x	y	z	$B_{\text {eq }}\left(\AA^{2}\right)^{*}$
Pt	0	0.00750 (2)	0	2.454 (7)
$\mathrm{Cl}(1)$	-0.2743 (2)	-0.1378 (1)	-0.0667 (1)	4.90 (5)
$\mathrm{Cl}(2)$	-0.0084 (2)	-0.4089 (1)	0.0729 (2)	6.31 (7)
O(A)	0.2386 (4)	0.1585 (3)	0.0419 (3)	5.7 (2)
O (B)	0.0137 (9)	-0.4964 (4)	0.2609 (8)	8.4 (3)
$\mathrm{O}(\mathrm{C})$	-0.0047 (5)	0.4006 (4)	-0.0426 (4)	7.5 (2)
N(11)	0.0979 (2)	-0.0546 (2)	0.1268 (2)	3.08 (8)
C(21)	$0 \cdot 1979$ (4)	-0.0059 (2)	$0 \cdot 1870$ (3)	3.5 (1)
C(31)	0.2669 (4)	-0.0425 (3)	0.2761 (3)	4.4 (1)
C(41)	0.2317 (4)	-0.1320 (3)	0.3020 (3)	$4 \cdot 8$ (2)
C(51)	$0 \cdot 1309$ (4)	-0.1831 (3)	0.2392 (3)	$5 \cdot 3$ (2)
C(61)	0.0647 (4)	-0.1424 (3)	0.1516 (3)	$4 \cdot 3$ (1)
N(12)	0.0639 (2)	-0.1020 (2)	-0.0527 (2)	2.92 (8)
C(22)	0.0097 (4)	-0.1948 (2)	-0.0770 (3)	4.0 (1)
C(32)	0.0502 (4)	-0.2725 (3)	-0.1136 (3)	4.7 (2)
C(42)	0.1484 (4)	-0.2532 (3)	-0.1257 (3)	4.4 (1)
C(52)	$0 \cdot 2048$ (4)	-0.1571 (3)	-0.0995 (3)	4.5 (1)
C(62)	0.1601 (3)	-0.0832 (3)	-0.0635 (3)	3.8 (1)
N(13)	-0.0910 (2)	0.0741 (2)	-0.1246 (2)	2.98 (8)
C(23)	-0.1815 (4)	0.0241 (3)	-0.1945 (3)	3.9 (1)
C(33)	-0.2416 (4)	0.0653 (3)	-0.2816 (3)	5.0 (1)
C(43)	-0.2076 (4)	0.1619 (3)	-0.2974 (4)	5.1 (2)
C(53)	-0.1167 (4)	0.2149 (3)	-0.2251 (3)	4.9 (1)
C(63)	-0.0586 (4)	$0 \cdot 1681$ (3)	-0.1398 (3)	4.0 (1)
N(14)	-0.0624 (2)	0.1156 (2)	0.0559 (2)	2.85 (8)
C(24)	-0.0059 (4)	$0 \cdot 2068$ (2)	0.0854 (3)	4.0 (1)
C(34)	-0.0434 (4)	$0 \cdot 2805$ (3)	$0 \cdot 1262$ (3)	4.7 (2)
C(44)	-0.1430 (4)	0.2599 (3)	0.1369 (3)	4.6 (1)
C(54)	-0.2018 (4)	$0 \cdot 1662$ (3)	0.1061 (3)	4.6 (1)
C(64)	-0.1595 (3)	0.0956 (3)	0.0659 (3)	3.9 (1)
H(21)	0.2208 (9)	0.0630 (8)	0.1616 (7)	6.1 (4)
H(31)	0.3467 (10)	-0.0023 (9)	0.3234 (7)	7.3 (4)
H(41)	0.2820 (11)	-0.1596 (10)	$0 \cdot 3712$ (8)	7.1 (5)
H(51)	0.1020 (15)	-0.2554 (10)	0.2561 (10)	8.8 (7)
H(61)	-0.0186 (12)	-0.1784 (9)	0.0989 (9)	7.5 (5)
H(22)	-0.0669 (11)	-0.2056 (8)	-0.0673 (10)	7.0 (5)
H(32)	0.0064 (11)	-0.3454 (9)	-0.1308 (11)	8.6 (7)
H(42)	0.1813 (12)	-0.3128 (8)	-0.1537 (9)	7.2 (5)
H(52)	0.2834 (12)	-0.1388(9)	-0.1051 (11)	7.9 (6)
H(62)	0.2008 (10)	-0.0083 (8)	-0.0407 (10)	6.7 (5)
H(23)	-0.2082 (10)	-0.0508 (8)	-0.1776 (8)	6.7 (4)
H(33)	-0.3120 (13)	0.0228 (11)	-0.3333 (9)	8.4 (6)
H(43)	-0.2491 (12)	0.1980 (10)	-0.3642 (8)	8.0 (5)
H(53)	-0.0887 (13)	0.2922 (11)	-0.2345 (10)	8.7 (5)
H(63)	0.0126 (11)	0.2051 (8)	-0.0831 (9)	7.4 (5)
H(24)	0.0694 (11)	$0 \cdot 2183$ (8)	0.0752 (9)	6.9 (5)
H(34)	0.0008 (13)	$0 \cdot 3533$ (8)	0.1479 (10)	$8 \cdot 6$ (7)
H(44)	-0.1727 (13)	0.3180 (10)	0.1709 (9)	$8 \cdot 0$ (6)
H(54)	-0.2830 (13)	0.1475 (10)	0.1102 (10)	8.1 (7)
H(64)	-0.2015 (9)	0.0205 (8)	0.0394 (9)	6.3 (5)
$\mathrm{H}(1 A)$	0.2320 (9)	0.2200 (7)	0.0061 (7)	5.6 (4)
H(2A)	0.3185 (10)	$0 \cdot 1330$ (8)	0.0583 (7)	$6 \cdot 2$ (4)
$\mathrm{H}(1 B)$	0.0723 (12)	-0.4564 (11)	0.3093 (9)	8.1 (6)
$\mathrm{H}(2 B)$	0.0072 (12)	-0.4689 (10)	0.2084 (10)	7.4 (6)
H(1C)	0.0643 (10)	0.4001 (8)	-0.0485 (7)	6.5 (4)
H(2C)	-0.0008 (10)	0.4574 (9)	-0.0057 (7)	6.8 (4)

E.s.d.'s are given in all tables and in the text. The digits in parentheses correspond to the least significant digits of the parameters.

> * The equivalent isotropic temperature factors were calculated by the relation given by Hamilton (1959) : $B_{\text {eq }}=8 \pi^{2}\left(U_{11} a^{* 2} a^{2}+U_{22}+U_{33} c^{* 2} c^{2}+\right.$ $\left.2 U_{13} a^{*} c^{*} a c \cos \beta\right) / 3$, where $U_{i J}=\beta_{l j} / 2 \pi^{2} a_{i}^{*} a_{j}^{*}\left(a^{* \prime}\right.$ are reciprocal-cell constants $)$.
before each structure factor is calculated. Scatteringfactor tables and anomalous-scattering factors were entered as for an X-ray problem. On each cycle the neutron data were included first, followed by the X-ray data.

On the first entry of each cycle, subroutine WEIGHT replaced the X-ray anomalous-scattering factors with neutron scattering factors and set indicators for a neutron problem. On the first X-ray reflection of each cycle, the X-ray anomalous-scattering factors were restored and indicators were set for an X-ray problem.

Table 3. Selected bond lengths (\AA) and bond angles $\left({ }^{\circ}\right)$

(a) Pyridine ring systems				
	$I=1$	$I=2$	$I=3$	$I=4$
$\mathrm{Pt}-\mathrm{N}(1 n)$	2.028 (3)	2.021 (2)	2.016 (3)	2.031 (2)
$\mathrm{N}(1)-\mathrm{C}(2 I)$	1.338 (4)	1.340 (4)	1.345 (4)	1.339 (4)
$\mathrm{C}(2 I)-\mathrm{C}(3)$	1.393 (5)	1.389 (5)	1.378 (6)	1.378 (5)
$\mathrm{C}(3 /)-\mathrm{C}(4 /)$	1.377 (6)	1.378 (5)	1.381 (6)	1.385 (6)
$\mathrm{C}(4 /)-\mathrm{C}(5 I)$	1.372 (6)	1.390 (5)	1.383 (6)	$1 \cdot 380$ (6)
$\mathrm{C}(5 I)-\mathrm{C}(6)$	1.388 (6)	1.381 (5)	1.383 (5)	1.380 (5)
$\mathrm{C}(6)$ - $\mathrm{N}(1 /)$	1.337 (4)	1.339 (4)	1.339 (4)	1.347 (4)
$\mathrm{C}(2 I)-\mathrm{H}(2 I)$	1.08 (1)	1.07 (1)	1.10 (1)	1.06 (1)
$\mathrm{C}(3 /)-\mathrm{H}(3 N)$	1.07 (1)	1.06 (1)	1.05 (1)	1.06 (1)
$\mathrm{C}(4 /)-\mathrm{H}(4 /)$	1.07 (1)	1.08 (1)	1.08 (1)	1.11 (1)
$\mathrm{C}(5 I)-\mathrm{H}(5 n)$	1.09 (1)	1.07 (1)	1.09 (1)	1.09 (1)
$\mathrm{C}(61)-\mathrm{H}(6 I)$	1.10 (1)	1.07 (1)	1.06 (1)	1.09 (1)
$\mathrm{C}(6 I)-\mathrm{N}(1 /)-\mathrm{C}(2 I)$	119.5 (3)	119.4 (3)	118.9 (3)	119.1 (3)
$\mathrm{N}(12)-\mathrm{C}(2 n)-\mathrm{C}(3 n)$	121.8 (3)	121.8 (3)	122.5 (4)	122.1 (3)
$\mathrm{C}(2 I)-\mathrm{C}(3 I)-\mathrm{C}(4 I)$	118.7 (4)	119.0 (3)	118.6 (4)	119.0 (3)
$\mathrm{C}(3)-\mathrm{C}(4 I)-\mathrm{C}(5 I)$	119.2 (4)	118.8 (3)	119.1 (4)	119.1 (3)
$\mathrm{C}(41)-\mathrm{C}(5 n)-\mathrm{C}(6 I)$	119.6 (4)	119.3 (3)	119.3 (4)	119.1 (4)
$\mathrm{C}(51)-\mathrm{C}(6 I)-\mathrm{N}(1 /)$	121.2 (4)	121.7 (3)	121.6 (3)	121.7(3)
$\mathrm{N}(11)-\mathrm{Pt}-\mathrm{N}(12)$	90.0 (1)	$\mathrm{N}(12)$	(13) 90	
$\mathrm{N}(13)-\mathrm{Pt}-\mathrm{N}(14)$	91.2 (1)	$\mathrm{N}(14)$	(11) 88	
(b) H-bonds ($\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}^{-}$)				
	$\mathrm{O}-\mathrm{H}$	$\mathrm{H} \cdots \mathrm{Cl}$	$\mathrm{O} \cdots \mathrm{Cl}$	$\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$
$\mathrm{O}(\mathrm{A}) \mathrm{H}(1 a) \mathrm{Cl}\left(1^{1}\right)$	0.97 (1)	$2 \cdot 17$ (I)	3.140 (4)	176.6 (9)
$\mathrm{O}(\mathrm{A}) \mathrm{H}(2 A) \mathrm{Cl}(2)$	0.97 (1)	$2 \cdot 16$ (1)	3.127(4)	169.7 (9)
$\mathrm{O}(\mathrm{B}) \mathrm{H}(1 B) \mathrm{Cl}\left(1^{1{ }^{\text {I }}}\right.$)	0.94 (2)	2.38 (1)	3.325 (9)	177 (1)
$\mathrm{O}(\mathrm{B}) \mathrm{H}(2 B) \mathrm{Cl}(2)$	0.91 (2)	2.30 (1)	3.202 (11)	177 (1)
$\mathrm{O}(C) \mathrm{H}(1 C) \mathrm{Cl}\left(1^{\prime}\right)$	0.93 (2)	2.27 (1)	3.179 (5)	168.0 (9)
$\mathrm{O}(\mathrm{C}) \mathrm{H}(2 C) \mathrm{Cl}\left(2^{\text {ili }}\right.$)	0.94 (1)	2.19 (1)	3.124(5)	175.1 (10)

(c) $\mathrm{H} \cdots \mathrm{Cl} \cdots \mathrm{H}$ angles

$\mathrm{H}\left(1 A^{\mathrm{iv}}\right) \cdots \mathrm{Cl}(1) \cdots \mathrm{H}\left(1 B^{v}\right)$	134.9 (4)
$\mathrm{H}\left(1 B^{v}\right) \cdots \mathrm{Cl}(1) \cdots \mathrm{H}\left(1 C^{\text {lv }}\right.$)	65.5 (4)
$\mathrm{H}\left(1 C^{\text {iv }}\right) \cdots \mathrm{Cl}(1) \cdots \mathrm{H}\left(1 A^{\text {iv }}\right.$)	84.3 (4)
$\mathrm{H}\left(2 A^{\mathrm{l}}\right) \cdots \mathrm{Cl}(2) \cdots \mathrm{H}(2 B)$	78.5 (4)
$\mathrm{H}(2 B) \cdots \mathrm{Cl}(2) \cdots \mathrm{H}\left(2 C^{\text {i }}\right.$)	108.2 (4)
$\mathrm{H}\left(2 \mathrm{C}^{\mathrm{i}}\right) \cdots \mathrm{Cl}(2) \cdots \mathrm{H}\left(2 A^{\text {iv }}\right.$)	117.5 (4)

(d) $\mathrm{H}-\mathrm{O}-\mathrm{H}$ angles
$\mathrm{H}(1 A)-\mathrm{O}(A)-\mathrm{H}(2 A) \quad 102.7(9) \quad \mathrm{H}(1 B)-\mathrm{O}(B)-\mathrm{H}(2 B) 106(1)$ $\mathrm{H}(1 C)-\mathrm{O}(C)-\mathrm{H}(2 C) 109$ (1)
Symmetry codes: (i) $\frac{1}{2}+x, \frac{1}{2}+y, z$; (ii) $\frac{1}{2}+x,-\frac{1}{2}-y, \frac{1}{2}+z$; (iii) x, $1+y, z$; (iv) $-\frac{1}{2}+x,-\frac{1}{2}+y, z$; (v) $-\frac{1}{2}+x,-\frac{1}{2}-y,-\frac{1}{2}+z$; (vi) x, $-1+y, z$.

Neutron scattering factors (Koester \& Yelon, 1982) used were: $\mathrm{Pt}, 0.95 ; \mathrm{C}, 0.6648 ; \mathrm{H},-0.3741 ; \mathrm{N}, 0.930$; $\mathrm{O}, 0.5805$; and $\mathrm{Cl}, 0.9579$ (all in units of $10^{-12} \mathrm{~cm}$). The least-squares refinement, again based on the F^{2} data, was carried out with isotropic extinction corrections (Zachariasen, 1967) for the neutron data and anisotropic corrections (Coppens \& Hamilton, 1970) for the X-ray data, until the ratios of change to e.s.d. became negligible. The final discrepancy factors are shown below.

		Standard deviation of an		
	$R(F)$	$R\left(F^{2}\right)$	$w R\left(F^{2}\right)$	
observation of unit weight				

Final difference Fourier syntheses showed no residual peaks greater than 0.53 or less than $-0.51 \mathrm{e} \AA^{-3}$ for the X-ray data. The maximum and minimum residual peaks were 0.4 and $-0.4 \times 10^{11} \mathrm{~cm}^{-2}$, respectively, for the neutron data. These latter values can be compared with $-8 \times 10^{11} \mathrm{~cm}^{-2}$ obtained for a hydrogen peak in an observed Fourier synthesis with only the neutron data.

Because anomalous X-ray scattering is important, both absolute orientations were tested.

The final coordinates and equivalent isotropic temperature factors (Hamilton, 1959) are listed in Table 2. Selected bond lengths and angles calculated with program ORFFE (Busing, Martin \& Levy, 1964) are given in Table 3. All figures were prepared by use of program ORTEP (Johnson, 1976).

Discussion. The major importance of this work is the unconstrained anisotropic refinement of the structure of $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}{ }^{1+} \cdot\left[\mathrm{Cl}_{2}^{-} \cdot 3 \mathrm{H}_{2} \mathrm{O}\right.\right.$ with combined X -ray and neutron diffraction data. The results of X-ray structural analysis per se show the correctness of the non-hydrogen part of the structure. With the combined data not only are all of the H atoms located, but also the hydrogen-bonding scheme is clearly revealed. Since the resulting positional and thermal parameters for non-hydrogen atoms for the combined data are in close agreement with those based on the X-ray data alone, only the results based on the combined data are presented in this work.*

The crystal structure consists of discrete ions in which the independent Pt atom exhibits the usual square-planar coordination with the four pyridine N atoms, as shown in Fig. 1. The $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]^{2+}$ cation shows approximate $\mathrm{C}_{2 n}-2 / m$ symmetry [the twofold axis bisects the angle $\mathrm{N}(11)-\mathrm{Pt}-\mathrm{N}(14)$]. The average $\mathrm{Pt}-\mathrm{N}$ distance of 2.024 (1) \AA is not significantly different from the mean $\mathrm{Pt}-\mathrm{N}$ distance found in cis-dichlorobis(pyridine)platinum(II) [2.04(1) \AA] (Colario \& Orioli, 1975) and in trans-dichlorobis(pyridine)platinum(II) [2.020 (4) \AA] (unpublished results). Each pyridine ring is essentially planar as shown in Table 4, and the four nitrogens are planar to within 0.026 (1) \AA with the Pt atom deviating from this plane by 0.023 (2) \AA. The angles between the plane normals for the neighboring pyridine rings are within a range of 82.9 (1) and $87.2(1)^{\circ}$; the dihedral angles between the mean plane of the four N atoms system and those of the four pyridine rings range from 66.8 (1) to $86.4(1)^{\circ}$.

Fig. 2 shows the hydrogen-bonding scheme of water to the neighboring Cl^{-}anions. The two H atoms of each water molecule are hydrogen-bonded to two different Cl^{-}ions, and each Cl^{-}in turn is bonded to hydrogens from three different water molecules. The detailed bonding parameters are shown in Table 3. These hydrogen-bond parameters are in accord with those quoted by Hamilton \& Ibers (1968) for O$\mathrm{H} \cdots \mathrm{Cl}$ bonds and are consistent with those reported for $\mathrm{CaCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{SrCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ (Agron \& Busing, 1986).

[^4]Table 4. Equations of best molecular planes and distances (\AA) of atoms from these planes
(a) $0.7860 X+0.5915 Y-0.2177 Z-0.0795=0$ (b) $0.7558 X-0.5382 Y-0.6432 Z-0.0118=0$ (c) $0.1786 X-0.3504 Y+0.7224 Z-0.0243=0$ (d) $0.8747 X-0.4253 Y-0.6222 Z-0.1334=0$ (e) $0.1818 X-0.4072 Y+0.6994 Z-0.1031=0$
(a)
$\mathrm{N}(11) \quad 0.026$ (1)
$N(12)-0.026(1)$
$N(13) \quad 0.025(1)$
$N(14)-0.026(1)$
$\mathrm{Pt}^{*} \quad-0.023(2)$

(b)

$N(11)-0.010(2)$
$\mathrm{C}(21) \quad 0.009(2)$
$C(31) \quad 0.001(3)$
$C(41)-0.009(3)$
$\begin{array}{ll}\mathrm{C}(51) & 0.009(3)\end{array}$
(c)

$$
\begin{gathered}
(c) \\
N(12)-0.003(2)
\end{gathered}
$$

$$
\begin{array}{lr}
\mathrm{N}(12) & -0.003(2) \\
\mathrm{C}(22) & 0.001(3)
\end{array}
$$

$$
\begin{array}{ll}
\mathrm{C}(22) & 0.001(3) \\
\mathrm{C}(32) & 0.004(3)
\end{array}
$$

$$
\mathrm{C}(42)-0.006(3)
$$

$C(61) \quad 0.001$ (3)

$$
\begin{array}{lr}
\mathrm{C}(42) & -0.006(3) \\
\mathrm{C}(52) & 0.003(3) \\
\end{array}
$$

$\mathrm{Pl}^{*} \quad-0.064$ (5)

Root-mean-square deviations of the fitted atoms for planes $(a),(b)$, (c), (d) and (e) are 0.026 (1), 0.007 (1), 0.003 (1), 0.009 (2) and 0.001 (1) \AA, respectively. Calculations were performed with program ORFFE4, an updated version of ORFFE (Busing, Martin \& Levy, 1964). X, Y, and Z represent direct-axis coordinates expressed in \AA.

* Atoms not included in the calculation of the least-squares plane.

Fig. 1. A perspective view of the $\left[\mathrm{Pt}\left(\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}\right)_{4}\right]^{2+}$ cation. H atoms are numbered according to the C atoms to which they are bound. Thermal ellipsoids enclose 50% probability.

Fig. 2. A view of the hydrogen-bonding scheme. Each Cl is hydrogen-bonded to the neighboring H atoms of three different water molecules, whereas each water is connected to two different Cl atoms. Thermal ellipsoids enclose 35% probability.

In this structure, both $\mathrm{C}-\mathrm{H}$ distances [1.06 (1)1.11 (1) \AA] and $\mathrm{O}-\mathrm{H}$ distances of water [0.91 (2)0.97 (1) $\AA]$ were determined. The average $\mathrm{C}-\mathrm{H}$ and $\mathrm{O}-\mathrm{H}$ distances are $1.078(2)$ and $0.943(5) \AA$, respectively.

We are grateful to Dr J. D. Hoeschele, formerly at the Health and Safety Research Division of ORNL, for furnishing us with a sample of the starting material. CHW is indebted to Dr C. R. Richmond, Associate Director of ORNL, for the arrangement of financial support, without which this work would never have been completed.

References

Agron, P. A. \& Busing, W. R. (1986). Acta Cryst. C42, 141-143.
Bau, R., Gellert, R. W., Lehovec, S. M. \& Louie, S. (1979). J. Clin. Hematol. Oncol. Third Symp. on Platinum Coordination Complexes in Cancer Chemotherapy, pp. 7, 51-62. Dallas: Harry Hines.
Busing, W. R., Ellison, R. D., Levy, H. A., King, S. P. \& Roseberry, R. T. (1968). Computer-Controlled X-ray Diffractometer. Report ORNL-4143. Oak Ridge National Laboratory, Tennessee, USA.
Busing, W. R. \& Levy, H. A. (1957). Acta Cryst. 10, 180-182.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). orfls. Report ORNL-TM-305. Oak Ridge National Laboratory, Tennessee, USA.

Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). orffe: Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
Colario, P. \& Orioli, P. L. (1975). J. Chem. Soc. Dalton Trans. pp. 1656-1659.
Connors, T. A. \& Roberts, J. J. (1974). Editors. Platinum Coordination Complexes in Cancer Chemotherapy. New York: Springer-Verlag.
Coppens, P. \& Hamilton, W. C. (1970). Acta Cryst. A26, 71-83.
Cromer, D. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 149-150, Table 2.3.1. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Cromer, D. T. \& Waber, J. T. (1974). International Tables for X-ray Crystallography, Vol. IV, pp. 72-92, Table 2.2A. Birmingham: Kynoch Press. (Present distributor Kluwer Academic Publishers, Dordrecht.)
Hamilton, W. C. (1959). Acta Cryst. 12, 609-610.
Hamilton, W. C. \& Ibers, J. A. (1968). Hydrogen Bonding in Solids, pp. 16 and 212. New York: W. A. Benjamin.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Kauffman, G. B. (1963). Inorg. Synth. 7, 249-253.
Koester, L. \& Yelon, W. B. (1982). In Neutron Diffraction Newsletter. IUCr Commission on Neutron Diffraction.
Levy, H. A. (1977). ORFFP3. Oak Ridge Fast Fourier Package. Oak Ridge National Laboratory, Tennessee, USA.
Lippard, S. J. (1982). 218, 1075-1082.
Orpen, A. G., Pippard, D., Sheldrick, G. M. \& Rouse, K. D. (1978). Acta Cryst. B34, 2466-2472.

Wei, C. H. \& Hingerty, B. E. (1984). Acta Cryst. A40, C309.
Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

Structure of Histaminium Tetraaquadisulfatomanganate(II) Monohydrate*

By Andrzej Wojtczak \dagger
Department of Mineralogy and Crystallography, Institute of Chemistry, N. Copernicus University, ul. Gagarina 7, 87-100 Toruń, Poland
and Mariusz Jaskólski
Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, ul. Grunwaldzka 6, 60-780 Poznań, Poland

(Received 22 December 1987; accepted 25 July 1988)

Abstract

C}_{5} \mathrm{H}_{11} \mathrm{~N}_{3}^{2+} \cdot\left[\mathrm{Mn}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right]^{2-} \cdot \mathrm{H}_{2} \mathrm{O}, \quad M_{r}=\) 450.28, monoclinic, $P 2_{1} / n, \quad a=6.819(1), \quad b=$ 18.129 (2), $\quad c=13.109$ (2) $\AA, \quad \beta=93.74$ (1) ${ }^{\circ}, \quad V=$ $1617.2(5) \AA^{3}, \quad Z=4, \quad D_{m}=1.86(1), \quad D_{x}=$ $1.849 \mathrm{Mg} \mathrm{m}^{-3}, \quad \lambda(\mathrm{Mo} \mathrm{K} \mathrm{\alpha})=0.71069 \AA, \quad \mu=$ $0.418 \mathrm{~mm}^{-1}, F(000)=932$, room temperature, $R=$ 0.032 for 2275 observed reflections. The structure contains a histaminium dication in syn-anti con-

^[* 4-(2-Ammonioethyl)imidazolium tetraaquadisulfatomanganate(II) monohydrate. \dagger To whom correspondence should be addressed.]

0108-2701/89/010030-04\$03.00
formation. Two monodentate sulfate ligands and four water molecules form a slightly distorted octahedral environment around the Mn^{2+} ion. The structure contains a complicated network of $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}, \mathrm{N}-$ $\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Introduction. In the vicinity of some biomembranes the predominant form of histamine is a dication (Durrant, Ganellin \& Parsons, 1975). Therefore some structures of histaminium salts have already been studied (Veidis, Palenik, Schaffrin \& Trotter, 1969; Bonnet \& Jeannin, 1972; Yamane, Ashida \& Kakudo, 1973; Bonnet, © 1989 International Union of Crystallography

[^0]: * (a) Research supported by the Office of Health and Environmental Research and the Division of Materials Sciences, Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC05-840R21400 with the Martin Marietta Energy Systems, Inc. (b) Presented in part as Paper 09.4-36 at the XIV International Congress of Crystallography, Perth, Australia, 12-20 August 1987.
 \dagger Health and Safety Research Division.
 \ddagger Chemistry Division.

[^1]: § Crystal (I) found to be triclinic with symmetry PI and cell dimensions $a=5.5289$ (9), $b=7.090(1), c=7.645$ (1) $\AA, \alpha=$ 79.12 (1), $\beta=83.92$ (1), and $\gamma=87.78$ (1) ${ }^{\circ}$. The 2602 data were collected with Mo K $\alpha_{1}(\lambda=0.7093 \AA)$ to $2 \theta=70^{\circ}$ and the structure was refined to $R(F)=0.047$ and $R\left(F^{2}\right)=0.101$.

[^2]: * Performed by Galbraith Laboratories, Inc., Knoxville, TN 37921, USA.
 \dagger Each H atom was constrained to be $1.0 \AA$ from the C atom to which it was attached, and to bisect the exterior angle defined by the C atom and the two adjacent ring atoms. The isotropic temperature factor of each H atom was assumed to be $1+B_{\text {eq }}$, where $B_{\text {eq }}$ is the equivalent isotropic temperature factor of the \mathbf{C} atom to which it was bound.

[^3]: * True absorption was inadvertently omitted from the linear absorption coefficient. When this is included, the coefficient becomes $2.250 \mathrm{~cm}^{-1}$. Using this revised value would have increased the ratio of maximum and minimum transmission factors by only 0.5%. We believe this would not change our results significantly.

[^4]: * Lists of structure factors, anisotropic thermal parameters and a figure showing the atom arrangement around the Pt atom have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 51289 (35 pp.). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

